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Coating flows, with a few exceptions, need to be steady and two-dimensional flows.
Moreover, the flow states need to be stable at the operating conditions chosen. The
goal of stability analysis of coating flows is to determine the region in the parameter
space at which the flow is stable and therefore the coated layer uniform. To determine
the stability of liquid flows, a generalized eigenvalue problem has to be solved. This
paper describes a formulation for a linear, three-dimensional stability analysis of free
surface flows that reduces the size of the eigenproblem, decreasing the computational
cost, with no further simplification, when compared with the methods reported in the
literature. This formulation is used to study the instability that arises in film-splitting
flows between counter-rotating rolls in a deformable gap. This flow instability leads
to nonuniform coating characterized by a wavy thickness profile in the transverse
direction. This patterning is usually referred to as “ribs.” This type of instability has
received a lot of attention in the literature. However, all previous work has addressed
the flow between two rigid rolls. Often, in practice, one of the rolls of a pair is covered
by a layer of elastomer. The deformation of the roll cover alters the conformation of
the gap, the pressure gradient at the film-split meniscus, and, consequently, the critical
parameters atthe onset of ribbing change. The results indicate how a deformable cover
can be used to delay the onset of ribbing in forward-roll coating.1999 Academic Press
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1. INTRODUCTION

Coating a uniform thin liquid layer onto a solid substrate requires a laminar flow,
steady and two-dimensional (except from the edges) as possible. Generally the flow
a free surface, a pair of three-phase static contact “line” regions, and one dynamic
and it is far from unidirectional. To predict the quality of the liquid layer produced take
accurate theoretical analysis of both steady-state flow and the response of that flow to a
disturbances by which itis tested, including molecular level thermal fluctuations in pressi
velocity, and surface tension that are virtually infinitesimal. The goal is to construct a rr
of the coating quality as a function of the operating parameters of the process. Such m:
often referred to as eoating window

In cases of Newtonian liquids, the governing Navier—Stokes system of the two-dimel
onal, steady-state viscous flows with free-surfaces can be solved by Galerkin's met
with finite element basis functions (Silliman and Scriven [27], Kistler and Scriven [20, 2:
Coyleetal.[10]). For the stability of the flow with respect to infinitesimal three-dimensione
disturbances, the corresponding equations of linear stability theory can also be solve
Galerkin’s method and the very same basis functions (Bixler [3], Ruschak [25], €ogle
[12], Christodoulou and Scriven [8]). The rates of growth of normal modes of disturbanc
are found by solving a large, generalized, asymmetric matrix eigenvalue problem. A cc
plete solution is not required, for only the eigenvalues with largest real part are neec
i.e., the leading modes. Hence algorithms that deliver all the eigenvalues are prohibiti
inefficient. Ruschak [25] and later Coydeal.[12] dodged this inconvenience by neglecting
the transient terms in the momentum equations. With this approximation they could red
considerably the size of the eigenproblem and then compute all the eigenvalue-eigenve
pairs of the reduced problem with a utility program, EISPACK in particular. However, th
approximation is valid only at a vanishing Reynolds number or when the marginal stabil
(onset of instability) of non-periodic disturbances suffices.

This approximation was avoided by Bixler [3] and Christodoulou and Scriven [8]. Tt
latter treated the complete matrix eigenproblem by Arnoldi’s method but computed only
leading modes. However, owing to the schemes employed to generate the meshes asso
with the basis functions, the infinitesimal disturbances included perturbations of positi
of all the finite element nodes, including those interior to the domain. Although the
perturbations are consistent with the domain-perturbation formulation of the linear stabi
theory of free boundary flows it is clear that perturbations of a node located within t
domain are not relevant to the stability of the flow. Moreover, the basis overlap (“mass”) ¢
weighted-residual sensitivity (“Jacobian”) matrices in the method adopted by Christodou
and Scriven [8] include entries that describe the sensitivity of the solution of the me
generation equations to the locations of the mesh nodes. Again, it is clear that the stal
of the flow cannot depend on the way the mesh used to discretize the flow domain
generated.

In this paper, we show how to avoid the perturbation of interior nodes. The new mett
reduces the size of the eigenproblem, thereby lowering the cost of computing the nee
eigenvalues. Itis totally independent of the scheme used to generate amesh. The newm
amounts to returning from domain perturbation to the classical treatment of condition:
free boundaries, that are only infinitesimally displaced from known loci. We use the mett
to analyze the stability of the flow between a rigid cylinder and a deformable cylinder
counter-rotation, i.e., operating in a forward roll-coating mode.
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2. RIBBING INSTABILITY

When a substrate is coated with a thin layer of liquid by the action of rotating rolls,
spreader, brush, or the like, the thickness profile of the layer as coated is wavy in the tr:
verse direction, as sketched in Fig. 1, if the speed of the substrate and applicator is toc
or the liquid viscosity too high. This type of nonuniformity of the flow pattern is commonl
calledribbing, sometimegorduroyor pin-striping It is a result of a flow instability: above
a critical value of the dimensionless parameter called the capillary nu(béfo), the
desired two-dimensional flow is unstable and therefore unattainable. The stable state
appears to be a steady, three-dimensional flow whose thickness profile is periodic in
transverse direction.

The instability of the splitting of a liquid layer, or film, as it exits from between rotating
rigid rolls or from beneath a spreader has been extensively studied. Using a lubrica
approximation, Pearson [22] was the first to analyze why a flow that otherwise leads |
uniform film can turn unstable. He showed that the viscous force destabilizes the film-s
meniscus whereas surface tension tends to stabilize it (the proximate destabilizing for
the pressure gradient demanded by the action of viscosity). With that, he recognized
the capillary number, a measure of the ratio of viscous to capillary forces, is the criti
parameter in the stability of this class of flows. He could not pinpoint the stability criteric
because he did not have available an appropriate boundary condition on Reynolds’ equi
at the film-split.

Pitts and Greiller [23] developed a stability criterion by considering the pressure g
dient near the meniscus of the splitting film in a force balance at the perturbed menis
(wavenumber of perturbation equallty, as illustrated in Fig. 2. If the pressure at pdint
is larger than the pressure at poiptliquid is driven from2 to 1, and the periodic per-
turbation decays. On the other hand, if the pressure at pdmtarger, liquid is pushed
towards the bulging part of the meniscus and the perturbation grows. The flow is unstz

DU

Roll Diameter = 10 cm

Viscosity = 14 mPa s Surface Tension = 65 mN/m

FIG. 1. Ribbing instability in forward film-splitting flows. If the roll speed is too fast or liquid viscosity too
high, the coated film is not uniform in the transverse direction.
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FIG. 2. The film-split meniscus is perturbed in the transverse direaioya sinusoidal disturbance.

to three-dimensional disturbances. The pressures at pbims 2 can be assessed from
the curvature of a sinusoidally perturbed meniscus, as shown, and the pressure gra
at the location of the unperturbed meniscus. The perturbed meniscus has a non-vani:
curvature in two orthogonal directions. Thus

11 1/ 1 )\ dp
P = Car(x) and  p; = Ca(r(x~|—e)+6N> X<

Ca=uV/o is the capillary number; /& is the unperturbed meniscus curvature inxhg
plane;N is the wavenumber of the perturbation; anid the infinitesimal amplitude of the
perturbation. It follows that the flow is stable if

dp 1 /1dr 9
— < — | 5—+N“).
dx<Ca<r2dx+ >

With several further simplifications, Pitts and Greiller [23] estimated that the critical cap
lary number at onset of ribbing ought to be about

Ho
Ca=28—.
R

HereHg is half of the distance between the rolls, @R the roll radius. This first stability
criterion was plainly an estimate.

Savage [31, 32] also employed the lubrication approximation, but used the bounc
condition derived by Coyne and Elrod [14] to account roughly for the capillary presst
at the film-split and under the developing film flow downstream of it. The estimate of tl
pressure gradient at the film-split was more accurate than that of Pitts and Greiller. Say
went on to use linear stability analysis to predict the condition of marginal stability. Fall [1
followed the same approach and examined the time-dependent response to infinites
perturbations in order to identify those that grow fastest.
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Coyle et al. [12] went beyond the lubrication approximation and examined the time
dependent response of the flow between counter-rotating rigid rolls to three-dimensic
disturbances by applying linear stability theory to base flows described by the Navi
Stokes system for viscous free-surface flows. They solved for both the base flow anc
stability by Galerkin’s method and employed finite element basis functions. They fou
that the earlier stability analyses based on the lubrication approximation underpredictec
capillary number at the onset of ribbing.

All these studies of stability of roll coating flows dealt with flows betweenttgial rolls.

In practice, a pair of rigid rolls is seldom used in forward-roll coating, except sometimes
meter a layer. Usually one of the rolls of each pair of a roll coater is covered with a resilie
layer that deforms during operation. The deformation of the roll cover affects the flow ra
meniscus positions, and pressure distribution close to the film-split meniscus. Theref
it also affects the stability of the flow. Here, the stability of steady film-splitting flows i
deformable gaps is analyzed.

3. FILM-SPLITTING FLOWS IN DEFORMABLE GAPS

The flow in a deformable roll coating gap was analyzed by Carvalho and Scriven [
Their two-dimensional, steady-state formulation is summarized here. The flow dom
and boundary conditions are indicated in Fig. 3. The velocity, pressure, and free surf
are governed by the Navier—Stokes system for incompressible fluid and the approp!
boundary conditions:

Rev.-VWw+Vp—-V.7—-StF=0 and V.v=0 inQ. (1)

TheReynolds number Re pV L/u characterizes the ratio of inertial to viscous forces.
V andL are suitable units of velocity and length, ane: Vv + (Vv) is the viscous stress
tensor.

“)
Rigid Roll

Inflow N Free Surface

Deformable Roll )

Undeformed State
Deformed State

FIG. 3. Sketch of domain for film-splitting flow in a deformable gap. The top roll is rigid; the bottom roll is
covered with an elastic layer, modeled here by an array of independent springs.
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Because ofthe presence of aliquid/air interface and a deformable wall, the two-dimens
domaing2 is unknowna priori and it is part of the solution.

At the rigid roll surfaces, labeled (1) in Fig. 3, the no-slip and no-penetration conditio
take the form

V = Vgro = WRrRL. (2a)

Heret is the unit vector tangent to the roll surface, in the direction of rotatiis; the roll
radius, andWr is the angular speed of the rigid roll. Along the inflow boundai) (n
Fig. 3), the inflow condition chosen is a specified constant pressure,

p = Pn. (2b)

At the deformable roll surface, labele8) (n Fig. 3, the traction exerted by the liquid is
balanced by the elastic force on the springs, which is radial,

No-(n-o) =—KNg- (X — Xp). (ZC)

Np - (X — Xp) is the normal displacement of the walj is the position of a point on the wall
in its undeformed statdy is the unit outward normal vector to the undeformed waX gt
nis the unit outward normal vector to the deformed wal;at is the Cauchy stress tensorin
the liquid; andK is the spring constant, which is related to the roll cover properties in a w:
described elsewhere (Carvalho and Scriven [7]). At the deformable wall, the liquid neitl
slips nor penetrates the wall, so that the velocity components in the horizontal dirggtior
and vertical direction, are

_ WpR

Uy =

WpR
tx and Uy: D
n-No n-Np

ty. (2d)
Wp is the angular speed of the deformable rgllandt, are the components of the unit
vector tangent to the resilient roll surface.

The outflow boundarieslf are located far enough downstream that it seems reasonal
to take the flow to be well enough developed that the directional derivative of the veloc
in the direction perpendicular to the outlet plane can be set to zero:

a—VEI‘1~VV=(:). (2e)
an

At the free surfaceq), the traction in the liquid balances the capillary pressure and the
is no mass flow across the interface,

dt
n.a:ad—s—nPamb and n-v=0. (2f)

o is the liquid surface tension.
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The dimensionless parameters that govern the base flow are

V H
Reynolds number Re= GARLY
"
H2
Stokes number  St= P8
uV
. Wr
roll speed rati = —
p Q Wo
. . . H
dimensionless undeformed cleararfoeinterference, Eo
modified elasticity number  Ne* = nv
% e = KR
. Vv
capillary number ca= 4%,
o

Gravitational effects are neglected in the cases analyzed her&tizeQ.V is the average
roll speed.Hy stands for both the clearance and interference between the undeforr
roll surfaces. The first situation is callpdsitive gapsnd occurs when the center-to-center
distance is larger than the sum of the roll radii. If the center-to-center distance is smaller t
the sum of the roll radii, the rolls would interfere were they undeformable. Such situatic
are callechegative gapsThe modified elasticity number gives a relative magnitude of th
roll deformation. The harder the roll cover, the smaller it is; in the limit of rigid rolls, the
modified elasticity number is zero.

Elliptic mesh generation was used to map the unknown physical domaito a fixed
reference domaif2g. Galerkin’s method with finite element basis functions was use
to solve the system of partial differential equations that describe the problem. Once
field variables were represented in terms of the basis functions, the system of differer
equations was reduced to simultaneous algebraic equations for the coefficients of the |
functions of all the fields, i.e., velocity, pressure, and nodal position. This nonlinear se
equations was solved by Newton’s method.

4. THREE-DIMENSIONAL LINEAR STABILITY ANALYSIS

The base flow is steady and two-dimensional. The stability of the flow to small distt
bances can be judged by solving the time-dependent Navier—Stokes system for the
time behavior of infinitesimal perturbations to the base flow. Because the main goal het
to analyze the onset of ribbing, the perturbations have to be three-dimensional. Becaus
perturbations are infinitesimal, any possible one can be represented as a linear combin
of a complete basis set of linearly independent normal modes, and so it suffices to exar
the fate of a generic normal mode. Most convenient in the present case is a set of Fol
modes in the third direction, i.e., transverse to the base flow. The coefficients of these m
are functions of time and the other two dimensions. Accordingly, the disturbed fields, i
velocity, pressure, and position of the domain, are written as the sum of the base state
an infinitesimal perturbatiori{ denotes the real part)

V(X, 1) = Vo(Xo) + eR{V'(X) - D(N2) e’}
P(X, t) = Po(Xo) + eR{pP (X) cogN2) et} ®3)
X = Xg + eR{X - E(N2) e'}.
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Vo, Po, andxg are the velocity, pressure, and position of the domain of the base flow, i.
the two-dimensional, steady-state solution of the free surface flow, which is known a pri
N is the wavenumber in the transverse directio(N = 277 /A, wherea is the wavelength
of the perturbation)g is the growth factor. The phase dyadics are

D = (ii +jj) cogN2) + kk sin(N2) and E = (ii +jj) codN2) + kK.

Their forms are dictated by, respectively, the incompressibility condition and the kinems
relation at the free surface (Bixler [3]).

The velocityv, pressurep, and the position of the domainof the disturbed flow are
governed by the time-dependent Navier—Stokes system for three-dimensional, free sul
flows,

0 .
Re(zj\t/+V.Vv)+Vp—V~T=0 and V.v=0 inV* 4)

with the appropriate boundary conditions, i.e., no-slip at solid walls, force balance at
resilient wall, appropriate inflow and outflow boundary conditions, traction balance, a
no mass flow across the liquid/air interface. The latter is known asiieenatic condition
and, for three-dimensional time-dependent flow, it is written as

X
n.ﬁ—n-v=0 onAx,. (5)

The force balance at the resilient wall is written as
Nog-(n-0) =—KNg- (X — Xo) onAj. (6)

The domain of the disturbed three-dimensional floiis a volume obtained by perturbing
the two-dimensional base flow domaif2) and extending it over one wavelength in the
transverse direction, as indicated in Fig. 4 (cf. Bixler [3]}, is the area of the perturbed
free surface andl} is the area of the perturbed deformable roll surface.

The perturbatiorfx’, v/, p’'} and its rate of growtl$ can be found by applying Galerkin’s
weighted residual method to Egs. (4)—(6). The weighting functions used for the momen
equation ardd(N 2) - ¢;; and for the continuity equatiory; cogNz). The functionsp;’s
are similar to the vector basis functions used to solve previously for the base flow velo
but now adding the component associated with the transverse direction. The fugsons
are the same scalar basis functions used to obtain the pressure field of the base flow
weighting functionsy; for the force balance equation at the deformable wall are chosen to
displaced Dirac-delta functions, as it was done for the base flow (see Carvalho and Sct
[5]). The weighted residual equations of momentum, continuity, kinematic condition at t
free surface, and force balance at deformable wall are
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Reference Domain

Perturbed Domain

FIG. 4. Diagram of mapping between perturbed three-dimensional dovitaamd reference domaisy. The
three-dimensional reference domain is obtained by extending the two-dimensional reference@gtnaone
wavelength in the transverse direction.

ou au au au ou '\ g
Ri“= {p(ﬁ+u&+v®+w5)¢i cos(Nz)+<—p+2M&>ﬂcos(Nz)
V*

X
au  dv\ I ou  dw\ .
+M(@ + &> WCOS{NZ) — M(E + &)@ N sin(N2)
— pOxpi CON Z)} dy* — / [n- (=pl + 7)]x¢i co(N2) d.A* (7a)
A*

. av av av av ou  dv\ 9¢
Ri = 14 E_’_Ljaix—i_v@—i_wg (ﬁiCOiNZ)‘}‘M 87y+87X 87XC01NZ)
V*

av \ 0¢; Jv  Jdw .
+ (—p+2ua—y) By cosN2) — M(E + W)@ N sin(N2z)

— pQy¢i COSN z)} dvV*— [ [n-(—pl +7)]y¢i coSN2) dA* (7b)
A*

ow ow ow Jw . au  ow ) d¢p; .
W — 4+ u— — — )¢ SIN(Nz — + — | —sin(Nz
R /w{p(atJr ax+vay+waz>¢' ( )+“<az+ax>ax (N2)

v  Jw)\dp . ow
+“(az + ay)ayS'n(NZ) + (—p+2uaz)¢.N cosN2)

— 006 Sin(N z)} dyv* — / [n-(—=pl + 7)]2¢i Sin(N2) d.A* (7c)
A*

ou 0 0
RC = (a—x+a—;+a—‘:>;ﬁ cogN2) dV* (7d)
V*
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RI= [ (No-(n-o)+ KNg- (x—Xo))éi cosN2) d.A* (7e)
A

R = /A* n- (v —X)¢; cosN2z) d.A*. (71)

A* is the area that surrounds the three-dimensional domain. The integralsit\ibat
appear in the momentum weighted residuals can be divided into several parts (see Fic
The contributions from the sides that are x-y planes cancel because the width of the dor
is one wavelength. Along solid surfaces, the entire weighted residual is replaced by
essential velocity boundary condition because of the way basis functions are chosen.
only contributions left are the area integrals over the inflow plane, outflow plane, and ¢
perturbed free surfaces that are present. The disturbances are not defined until their bel
on these boundaries is specified. This crucial matter is treated in the next subsection.

To proceed, the perturbed three-dimensional physical doiaisa mapped to a known
reference three-dimensional domaiy, as in Fig. 4. The latter is simply obtained by
extending the two-dimensional reference dom@inover one wavelength in the trans-
verse direction. The three-dimensional mapping x(§) from M, to V* is written as a
perturbation of the mappingy, =Xg(&) between the two-dimensional reference domait
Qo and the two-dimensional base flow domap extended over one wavelength in the
transverse direction.

The gradient of the perturbed mapping is a kind of deformation gradient:

ox By oz x|

9E 0t OE & 0¢

— 71— |3 3 az | _ | ax 3y
Vex=Jd= 145, 5 & |=|& & 0
ox By oz oy q

¢ ¢ 9 ¢ ac

The Jacobian of this transformation is
ax dy  9x ay ax’ ay
J=——=—- "= =3k 1+ e’ cogNz = |3,
V1= dgan ooz 0'{ e cos )(axO+ayo

where|Jo| is the Jacobian of the two-dimensional mapping from the reference ddgain
to the domain of the base flo®@. From this it follows that

ax’ oy
* t
dv* =dQ dz{1+eeﬂ cos(Nz)(—aXO +_8yo)}'

Thus volume integrals over the perturbed domdfrreduce to an area integral over the
unperturbed two-dimensional domdihand a line integral along the transverse directior
z. The volume integrals of Egs. (7a) to (7d) have the form

/ F(x, v)dV*

and can be rewritten in the more useful form

2_7
/ F(x,v)dV*:/ /F(x,v)dez
v o Ja

0 ax' ay
+e/3‘/ /Fx,v co Nz( +—)dez 8
€ A (X,v) cogN2) % T oy (8)




544 CARVALHO AND SCRIVEN

Now, substituting the disturbed fields (3) into the weighted residual equations (7), |
earizing all the terms, and discarding terms of second and higher powergieifis the
so-called weak form of the linear stability problem, i.e., the Galerkin weighted residuals
the equations that govern an infinitesimal perturbation.

The linearization of the derivatives of the perturbed fields with respect to the positic
of the perturbed domain follows the general form shown in the example below,

du  au ou’  dug /ax oy J|ou
= =20 1 e’ cogN2) 0o (X, Y7, NT0Uo |
ax 9Xo axo 8x0 0Xo  dYo [J| ax’

where
d ay o ay’ o

o = anae ~ ag oy
For example, the Galerkin weighted residual of the x-component of the momentt
equation of the perturbed flow becomes

2r/N dUg dUp dUg \ 0¢;
U — N - - 2u— | 2L
R /0 coy Z)dZ{/Q{p<uOBXO+voayo>¢. ( Po + “ 3% >8xo
Uy dvp 3¢ A7 / /
i (3)/0 * 3X0) oo gx¢l} }+6 N P Q,ou #
ou’ ou’ 8u0 ,dUg , au"\ 9¢;
g P8 — 2 -
+./Q {p[“"axO Yoy Lo Y 3yo}¢l +< b “axO)axO

ou’ lon ,dUg ,dUg ow'’
9% 90 ) g — Npug 2 Ldg
+M(3yo+8xo> Yo + Nul'g: - (y Vo +x 9%o )¢' no axo}

Ao O, o dvo\ O ax  dy
P v Y de
+ /Q{ M oxo 9% <8yo + axo> Yo ~ PO } (E)x + 8y0> d
3Uo 3U0 3UQ 8(]5, dUg 3¢i
— 21
+/Q{p<u°a / )¢' Hax 9% +< Po + 8x>8x’

(8Uo n 8v0) 8¢| +M<3Uo 4 8U0>8¢|}|J/| dQ}
Yo 9%/ Yy’ ay’  9x’/ dyo ) Ml
The line integrals related with the boundary conditions at inflow, outflow planes and ft
surfaces were omitted. These terms are treated in the next subsection.

The contribution in the first curly bracket is independent aind is identically zero:
it is exactly the x-component of the momentum weighted residual of the base flow. T
factor 7 /N that multiplies the term proportional to the perturbation parametssmes
from the integral along the transverse directioaf sir®(Nz) and cod(N2). That factor
together withee®t are common to the remaining contributions and can be cancelled beca
the residual should ultimately vanish in Galerkin’s method. What is left is the Galerkir
weighted residual equation for the x-component of the momentum weighted residual of
perturbation flow.

In a similar way, to evaluate the residual equations of the force balance at the deform:
wall and the kinematic condition at the free surface, the area integrals over these pertu
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surfaces, Aj and Af, have to be rewritten as integrals over the unperturbed and knov
deformable wall and free surface areas. They are both extension over one wavelength i
transverse direction of the liné% andT'ss that define the position of the resilient wall and
free surface of the two-dimensional base flow,

/ F(x,v)dA*:/W/ F(x,v)dFdz—Ireeﬂt/W/ F (X, V)
.A}‘ 0 I'tg 0 Tfg

ox' 9 0
X {cos(Nz)< X0 87)1(“-’_ a)ll“o-'_ 81{) +NS|n(Nz)<x+yyo>}dFdz (9a)

/ F(x,v)dA*:/W/ F(x,v)dr‘dz+eeﬁt/w/ F (X, V)
A 0 Jry 0 Jry

X {COS(NZ)C)XO 9x + o + oy > + Nsin(N2) (x —+Yy Byoﬂ drdz (9b)

o' o' aI

After substituting the disturbed fields (3) into the weighted residual equation (7e)—(7
linearizing the terms, and discarding the terms of second and higher ordersluidt is left
is the weak form of the linearized kinematic condition and force balance. For example,
Galerkin weighted residual of the kinematic condition of the perturbed flow becomes

27 /N
Rikz/ cogNz) dz
0

(Nox U’ + noyv/ + n/xuo + n/yvo)gbi dl”}

(No - Vo) dr} + eeﬁt%{—ﬁ (X'Nox + Y'Noy) i AT

s s

s

Like the momentum residual, the contribution of the first term is independerdrd is
identically zero: it is the residual equation of the kinematic condition of the baserfipw.
andngy are the x- and y-components of the unit vector normal to the unperturbed surfz
andn; andn{, are related with the perturbation of the normal vector; they are given by

dy'/dlo
[(0%0/0T0)2 + (3yo/3T0)2] 2

aX//aFo
[(9%/8T0)2 + (3yo/3T0)?]

n, =+ and ny =7

I'o stands for the reference domain coordinate along the free boundary.

4.1. Boundary Conditions for the Momentum Equation

As mentioned before, the relevant parts of the area integral4Vvénat comes from the
weak formulation of the three-dimensional, time dependent Navier—Stokes equation are
integral over the inflow planel},, outflow planeA;,, and any free surfacgl, that are
present:

[0 pl 4] N2 )0 = [ [n-(pl+ 7] O0ND ) A4

+/ [n-(—p|+T)]-(D(NZ)-¢i)dA*+/ [N (=pl+7)]-(D(N2) - ¢)dA".
A A

*
out
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The disturbance of the flow is only defined after its behavior at the boundaries is specif
Unlike the free surfacedy;, the positions of the inflow and outflow planes of the disturbec
flow are fixed. At the free surfaces, the normal component of the traction must be balan
by capillary pressure and the tangential component, or shear stress, must vanish,

[n-(—pl +7)] =0(V-nMN—nPanp

This is a three-dimensional version of the boundary condition (2f) used for the base flc
The order of the derivatives in the area integral over the free-surface can be reduced
the surface divergence theorem,

/ [n-(=pl +7)]-(D(N2) - ¢) dA* = }l{ﬁm-(D(NZ) ~¢) dI
Afs

~ [ oV @2 6)d = [ Pun- OND- g A"

Afs Afs

m is the binormal vector along the surface boundary curvéands the surface divergence
operator, viz.V—nn - V. The integrals over the perturbed free surface atgecan be
rewritten following Eq. (93a).

The boundary conditions along the inflow and outflow plane used for the three-dimensic
perturbed flow were simply an extension of the conditions used for the two-dimensio
base flow. At the inflow, the pressure was taken to be constant, therefore

p'=0.

At the outflow plane, the directional derivative of the perturbed velocity in the directic
perpendicular to the outflow plane was set to zero:

no-vu' =0.

4.2. Restriction of Domain Perturbation to Free Surfaces

As noted in the Introduction, earlier analyses have followed the prescription of dom:
perturbation and displaced the nodes associated with finite element basis functions.
linear stability analysis this is quite unnecessary. If the domain perturbation approac
retained, only the positions of nodes on free surfaces (or other free boundaries) nee
be perturbed as part of a generic disturbance. This is done here, by setting the dor
perturbation to

X = H(O)(Xo)h/n, HO — |lim H(ts)7 (10)

§—0

whereH® is a smooth function defined by

1, if Xo€eTl;
H®(xg) =< 0, if Xo € Q and|xg — Xp| > |8n|, ¥Xp € T';
smooth function if Xo€e Q and|xg — Xp| < |8n]|, VXp € T.
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H®

FIG. 5. FunctionH® (x,) used to define the domain of the perturbation. It vanishes inside the domain, it
equal to one at the boundaries, and close to the boundaries, it smoothly decays from 1 to 0.

It vanishes inside the domain, itis equal to one at the boundaries and close to the bound
(inside aring of thicknes®), and it smoothly decays from 1 to 0, as sketched in Fiy. 5.a
scalar function that gives the amplitude of the perturbationpdathe unit normal vector to
the unperturbed domain boundary; see Fig. 6. The amplitude of the boundary displacer
h’ differs from zero only where the domain perturbation is relevant, viz. free-surfaces ¢
other free boundaries, like a deformable wall. In finite element representation it is a lin
combination of basis functiorg on the boundary of the base flow domain,

L
W (xs) =Y H/¢i (xss).

i=1

In this way, the number of basis function coefficients (“degrees of freedom”) associa
with the disturbance of the domain is reduced to one per node located on free-surface
other free boundaries).

The definition of the domain perturbation in (10) also simplifies the weighted residt
equations substantially because of two properties of the funétifh

dHO®  gHO :
/ F(xo)( + )dQ = / F(xo) dI'  and / F(xg)H@ dQ = 0.
Q 0Xo Yo r Q

These allow terms of the weighted residual equations which have derivatives of n

x=hn

AT

/
i

-~

("\/ Free bo\undaty

\,

Fixed boundary

FIG. 6. The perturbation of the free surface is restricted to displacements along the normal direction.
amplitude is given by a scalar function
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displacement to be simplified to line integrals; in general form,

/ F(XO)(B—X + a—y) dQ = / h' F(xq) dT”
Q dXp  dYo r

/F(xo)a(*)mdﬁz/h/F(xo)%@dF
Q T

ax 9] aT
a(x) || / p dYo 9(*)

F Mg = [ WEx) 222 gr.
/Q VNI LT

dr is the differential along the portion of the boundariesoivhereh’ differs from zero.

For example, the x-component of the perturbed momentum weighted residual after
moving the steady state contribution, that is identically zero, cancelling the&fm/ N,
and after all integrals simplifications is

R“—ﬁ/ u/¢-d§2+/ ua—u/+v 8u/+u/%+v/% &i
B szp I Q p %o oy 0Xo ayo |

au'\ a¢y U v\ agy w'
+(—p’+2,u )ﬂ+u<—+ v>ﬂ+N2MU/¢i_NM¢i w}dQ

d0Xg / 0Xo Yo X0/ Vo dXo
dUg 0¢; (8Uo 81)0) ;i
+ [ d—2ui 00 (250 TN EA e
/r{ Maxo 9Xo o Yo  9Xo/ Yo PO
dUg 0Xg aUOByo dUg 0Xg 0 dUg \ 9Xg ¢
0770 000 o 49, ZO0 TR0 T _ 2, 270 ) 20T
+ <°ar ar TG ar )P T A T axe T\ TP T s ) ar ar

dUp  dvg \ dYo 0 dUp dYo ~ dvp 3%\ 9 |,
9o | o) 9o O o 9% | 90 9% ) 9% Ly g, 11
+“(ayo+axo> ot a0 T\ Grar Tar ar ) aye (11)

The line integrals corresponding to the boundary conditions at the inlet plane, ou
plane, and free surface were not included in the expression above.

In matrix vector form, the set of algebraic equations that governs the generic perturba
is

R(¢) =0,

whereR is the column vector of weighted residual equations eirid the column vector
of coefficients of the finite element basis functions with which the perturbation of veloci
pressure, and free boundaries position are represented.

When this set of equations is expanded in Taylor series and truncated aOgforon
the grounds that the perturbation is infinitesimal, the result is the equation set

R

—cd =0.

ac
dR/ac is the matrix of sensitivities of the weighted residuals with respect to the unknoy
coefficients of the perturbation. It is clear from Eq. (11) that this matrix can be separa
into two matrices:

oR

— = —8M +J.
= M +
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M is called the mass matrix (actually it represents the overlap of basis functions) an
the Jacobian matrix. For free surface flows, both matrices are asymmetric. Moreove
the class of problems analyzed here, the mass midtiix singular, because the continuity
equation and essential boundary conditions do not contain time derivatives.

It follows that the generic perturbation is governed by the generalized, nonsymmet
and large eigenproblem:

Jc' = BMc’ 12)

All entries of the Jacobian and mass matrix including the appropriate boundary conditi
for the flow in a deformable roll coating gap are recorded in Table 1.

TABLE |
Mass and Jacobian Matrices Entries for Stability of a Deformable Roll Film-Splitting Flow
8R,/8cj' = —ﬁMi'j + Ji'j

(1) x-Component of Momentum Equation

Mui’.u’i = 7\/p¢|¢1 dQ
Q

- LT 09, 09 3¢ 0,
—/Q{p( de + v Ody + ¢J)¢|+ MdXO % +Mdy0 o + N ﬂ¢|¢]}

8¢ 00; A
—/{ —‘d).nox y;¢inoy}dr—/ a%d)inmdr

Cout

dUo 0¢j 3¢\ 99
Jv — i o D PR dar
uiAbJ / {p ¢]¢ 0X0 By / (P nOy /I:DM Yo b Noy
d
‘]u"w’ = _/ ¢I ¢I
i o

‘Ju.’Ap’. = 7X]dQ+/ X|¢|n0xdr
Q Tout
dUg 0¢; (3[]0 3U0> Blo] ( dUg 0Xg dUq 3y0>
Jyw =— 22— — — _—+ — Up— — —
uon /rf{ oo Moy Tax ) oy PP TP \WGr or TG ar )
s

dUg %o dUg\ 0Xp 0 au ) Yo 0
+2,u—0—0ﬂ+( +ou 0) 0 9 (70 Uo) Yo 91
0%y /) o' oI’ Yo dXo ) o' oI’

dUg Yo ~ dvp dXo \ ¢ } { agi dp;  INoy I
———+ — — dr Nox — — —
“(ar ar T ar ar) $dl+o o LT oF T or ar ¥
S

ENEELL Yo ( 0Xo dyo) dXo ( Yo 3Xo> 0 3¢J
Oy — Nox
ar

— — 1N No;
ar $9i oor TeGr ) ar ar

%(@% 3”ox310)%¢}
ar \ ar ar ~ ar ar !

(i) y-Component of Momentum Equation

Mvi/.v} =- /P¢i¢j dg
Q

Continued
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TABLE | —Continued

Hoxe 9% Yo Yo

09 09 } ;.
- —— ¢ Noy 2— ; dr — dar
/r {BXO Nox + @iNoy % i Noy

out

a R
3w =— [ NP4 aa
(N} ° 3y0

a "
Jp =— ﬂx; dae + Xj®iNoy dI’
b 3)/0 Tout

Q

o 0 (auo 81)0) o, ( Do 9% 9o Yo

Jiw = 22— — — — Uy — — —_ -

A /}f{ Pavoaye Mo T % ~ P9+ o\ Uogr 5T Y YOGE B
S

dvp dYo 0 (
2y 2Y0 90 0%k
AT AT By Po+2

o BYo  Bvp %0\ eh } { 3¢, 06, _ Moy O
r n
“(ararJraFaF) 1 dl +o o LUar 0 T ar ar
S

,90%o 9Xo ayo ayo Yo 0Xo\ 0 0¢;
+NSE (n ~ Moy )9 = gp Mg g aT“aT“J

8v0) Yo O (auo 8110) IXo ¢
"oy ) ar ar 3V | 9%/ ar ar

ar \ Yar

Y% (anoy Yo | 3Nox %) 0 é }
ar \ oI ar ar ar !

) z-Component of Momentum Equation

My, wi = —/,0¢i¢j de
Q

[ = /NM%% aQ — / N¢j¢in0xdr_/ N¢;¢inox dI’
Q it TFout

J,
in

le/,v; = /N:u“ﬁ(bj aQ — / N¢j¢\n0ydr _/ N¢j¢in0ydr
Q Tin Fout

_ ;. 09, A 9 3p; 9 2
= /Q{p<uoaxo + V07" )zb. Waxe ora T Haye oy T 2N u¢.¢1}

» :—/Nqbixjdﬂ
Q
3¢J 3y0 BXO)
J/ ;) = — N i Ldr N i — X A
& /rf Pot; dl' + o /{¢ (°yar+n° ar
s

Tts

’
i

aNgy ONgy X a d X
+di¢; (—Oyj + = J) b ;f (nOy a)? + Ny BFD)}dF

or' ar o' oI

dvg a¢1 3¢| ¢J
o = —@jdi iNox 01" — i Nox AT
LR /Q{P3XO¢J¢ +u dy 3X0 / o /rom o o

Iy =/{p(u0% LI 3—U2¢1>¢. LR Y u¢.¢,}
Q

Continued
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TABLE | —Continued

551

(IV) Continuity Equation

09,
‘]pi/.u’i _7/67)(0)0 dQ

= 3¢J
1 ayo

Iyt =— | Nojx dQ
I ] 9

dXg dUg 3y0 (’)vo)
Jyw = — dar
PN /rf (ar ar T ar ar Xi9i

S

xi dQ2

(V) Free Boundary Perturbation

Kinematic boundary condition at free surface

Mhi’.h/. =/ ¢ig; dT
! Tts
It =/ Nox®i ¢; AT’
I’

s

Jhi/,u; =/ Noy¢i; AT
T

fs

3Xo Yo } 3¢J
J /o = = _— —_— i
.’ /rf [Uo a7 0 @i

Force balance at deformable wall surface

1 d 9
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4.3. Method of Solving the Generalized Eigenproblem

The stability of the flow is dictated by the eigenvalues with largest real partieatang
eigenvaluesTherefore, all that are needed from (12) are those eigenvalues that are, or
candidates to become, the leading ones. The eigenfunctions are often of interest, too.

When the mass matriM is singular and the Jacobidnis nonsingular, the number of
eigenvalues is smaller than the dimension of the problem (see Golub and Van Loan [1
The number of missing eigenvalues is equal to the number of equations that lead t
identically zero row in the mass matrix. These equations are those that do not pre
time derivatives, i.e., the algebraic equations related with the continuity equation, essel
boundary conditions, and force balance at the deformable wall.

As explained by Christodoulou and Scriven [8], the missing eigenvalues are gener
referred to as “infinite eigenvalues” becausdifis perturbed such that it becomes non-
singular, very large eigenvalues appear and they grow as the perturbation is reduced
when searching for the leading eigenvalues that dictate the stability of the problem, th
effectively infinite eigenvalues have to be removed from the equation system, for otherv
they are the ones with largest real part. A way of accomplishing this is by using a trans
mation that maps them to zero. An example of such transformation is the shift-and-iny
transformation. The generalized eigenproblem is rewritten in terms of ayshifhich for
the present purpose is real. The transformed eigenproblem becomes

Ac=puc; A=Cd—yM)landu = L. (13)
B—vy

The infinite eigenvalues of the generalized problem are mapped into zero eigenvalue
the simple eigenvalue problem, i.g.= 0, wheng = co. In this way, too, the generalized
eigenproblem (12) is altered to a simple eigenproblem, Eg. (13). The leading eigenva
of (13) are those eigenvalues of the original problem that are closet to the shiftyaleg
W is maximum wherg — y is minimum.

Equation (13) was solved by an iterative Arnoldi method with implicit deflation develope
by Saad [29] for asymmetric eigenproblems.

4.4, Test Problems

Before this method was used to find the stability of flows in deformable roll coatir
gaps, it was tried on two free surface problems for which solutions are available in-
literature. The first was the stability of a static liquid layer, a quite simple example. T|
second problem was the stability of film-splitting flows between rigid rolls.

4.4.1. Static Liquid Layer

This is a simple test because the base state consists of zero velocity, hydrostatic pre:
distribution, and flat free surface. Liquid fills a rectangular pool of widtand heightD
(see Fig. 7); the aspect ratio bf D =5 was chosen. The contact lines were prescribed t
be pinned.

The stability with respect to three-dimensional disturbances of wavenuitber0.0628
was computed. Because the disturbance in the transverse direction is taken to be peri
there was no need of including a volume constrain to the system of equations. Ruschak
confirmed that if the mesh is well refined, the results for this aspect ratio match to desi
accuracy the leading eigenvalue, which is real, of the analytical solution in the limiting ce
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Pinned contact lines /r
_____ . \\'
'\.\\
il
D
A=2n/N

L

FIG. 7. Rectangular liquid pool of width and depthD. The contact lines are pinned.

of a infinitely wide liquid layer (Anshus, [1]):

g (1 NZ) coshN sinhN — N
- Bo/ 2N(N2 + cosif N)’

Bo= pgD?/c is the Bond number, which gives the ratio between gravitational and capilla
forces. Provided gravity is directed downwards, all eigenvalues are negative, i.e., the |
state is stable.

The domain was divided into 50 elements by & 50 mesh. Figure 8 compares the
real part of the eigenvalue computed as a function of wavenumb&rBo= 1 with the
analytical solution of Anshus [1] and results of Christodoulou [9]. The agreement is go
over the entire range of wavenumbers. With the 50-element mesh, the size of the m:
eigenproblem is 864 864. Had the location of internal nodes been perturbed, followin

100
[=]
(=Y o) 10 A AR A AN LA N
a
[-=%
Y
s : . :
o 0.1 F------- BRI 4 I T
~ 0 ‘. "
[
= 1 Christodoulovw (1990)
Ed .
s 000 - = | ——Anshus (1973)
O 0
e This work
0.001 e — ettt i)
0.01 0.1 | 10 100

Wave Number, N D

FIG.8. Growth factors of three-dimensional sinusoidal perturbation in the transverse direction as a functi
of the wavenumber of the disturbando= 1.
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the approach used by Christodoulou and Scriven [8], the size of the matrix eigenprob
for the same discretization would have been 13(305.

4.4.2. Film-Splitting Flows between Rigid Rolls

In this second test flow, liquid is dragged through the gap between two counter-rotat
rigid rolls and then splits into two films, one attached to each roll. Celyé.[12] analyzed
the stability of this flow by means of the Galerkin/finite element method. Because they f
lowed Ruschak [25] in neglecting the local accelaration within the liquid, their formulatic
is strictly correct only at zero Reynolds number or at the condition of marginal instabili
of non-periodic normal modes. Their results at vanishing Reynolds number are the bas
comparison here.

The boundary conditions are the same as the ones used for the deformable roll
presented before, with the exclusion of the resilient roll.

The eigenvalues with largest real part were computed at different wavenumbers of
periodic transverse disturbance. At all the conditions explored, the leading eigenvalue
no significant imaginary part, as illustrated in Fig. 9. The figure shows the first ten lead
eigenvalues (largest real part) at a gap to diameter EaidR = 2 x 10~2, capillary number
Ca=2, and wavenumbeN Hy =0.1. Because the real part of the leading eigenvalue i
negative, the flow is stable with respect to this particular perturbation.

Figure 10 plots the computed growth faci®ras a function of wavenumbey at the
gap Ho/R=2 x 1072, vanishing Reynolds number, and different capillary numbers. A
Ca=0.5, g is negative at all wavenumbelks= 217 /1, i.e., the flow is stable with respect to
all three-dimensional infinitesimal perturbations.@d= 10, g is positive over a range of
N, i.e., the corresponding perturbations grow exponentially with time. Though the stea
state seen in experiments is a secondary flow governed by nonlinear effects (Gurfinkel
Patera [18]), its wavenumber appears to be close to that of the normal mode with farge:
i.e., the one that grows fastest. 8a= 10, that wavenumber is approximatélyH, = 0.35.

0.5
03 Fomogem sl e
S T e S IR RIS
0 —— 8
02 f g T I IR

Im {pYHe/V

-0.5

0.7 -06 -05 -04 -03 -02 -01 0 0l
Re (B} Ho/V

FIG. 9. Eigenvalues with largest real part for film-splitting flow between rigid rolls at a gap to diameter rat
Ho/R=2 x 1072, capillary numbeCa= 2, and wavenumbeX H, = 0.1.
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Growth Factor, Re {B} HO/V
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FIG. 10. Growth factor versus wavenumbers at various capillary numbers for the film-splitting flow betwe

0.5
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rigid rolls. Re= pV Hy/u =0 and gap to roll diameter ratid,/ R=2 x 1072, The critical capillary number for
the onset of ribbing instability is abo@a* = 2.5. The leading eigenvalue was real for all the cases analyzed.

At aboutCa= 2.5, that wavenumber is approximateélyH, = 0.3, but the curve is tangent
to theR{B} =0 line: the growth rate is zero. This defines tiréical capillary number

Above it, the two-dimensional flow is unstable with respect to the class of perturbatic
covered by the analysis; below it, the flow is stable with respect to all such perturbatior
Figure 11 reports the results of computing a critical capillary number versus the ratic

gap Mo to diameter R, i.e., the predicted critical condition at each roll separation.

10

Coyle et al. (1990)

I B This work

Critical Capillary Number, Ca*
@

0.01 e Y

0.0001 0.001 0.01

Gap/ Diameter, Ho/ R

0.1

FIG.11. Critical capillary number for the onset of ribbing as a function of gap to roll diameter raRe&t0.

The continuous line shows the theoretical predictions reported by @byk[12]; the squares are predictions

with the computationally more efficient method developed in this work.
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Above the curve of a critical capillary number, the flow is unstable with respect
perturbations that lead to ribbing. The predictions of a critical capillary number comput
in this work agree with interpolations of Coyé¢ al.[12]. Though the comparison is at the
vanishing Reynolds number, the formulation in the present work is not restricted to t
limit. No independent results at non-zero Reynolds number were accessible, however.

The size of the eigenproblem for the 352-element mesh used was<8&8%6. Had the
locations of internal nodes been perturbed, following the approach of Christodoulou :
Scriven [8], the size of the eigenproblem, with the same discretization, would have b
8681x 8681. At the same level of accuracy, the matrix dimension of the eigenproblen
only 65% of that when the earlier approach was used. This translates into a substantial s
of memory and computational time required to solve the matrix eigenproblem, Eq. (12)

5. CRITICAL CAPILLARY NUMBERS IN A DEFORMABLE ROLL COATING GAP

The issue here is the effect of a deformable roll or roll cover on the stability of filn
splitting flow.

First, the stability of the flow between rigid rolls is compared with the stability of th
flow in a deformable gap at the same operating conditions. Figure 12 illustrates how the
part of the leading eigenvalue for both rigid and a deformable gaps varies with wavenun
atHp/R=2.6 x 103 andCa=0.2 . As mentioned before, the leading eigenvalues had n
significant imaginary part.

The elasticity number of the deformable roll case Wa = /L\7/K R? = 1078, that rep-
resents a soft roll cover. For this set of conditions, the flow between rigid rolls is unstable
there is a small range of wavenumb@tsuch that the growth factgr is positive—and the
flow in the deformable gap is stable. This result indicates that the roll deformation delz
the onset of ribbing, even when the rolls are not in interference, i.e., a positive gap.

0.005
>
S~
- 0
=
&
A -0.005
[~
=
S
Q -0.01
o
e
= i . .
S - —@—Rigid Ga ' :
2 w0015 |- et e N
G [ ~g— Deformable Gap : .

002 Lo v vy ;

0 0.02 0.04 0.06 0.08 0.1

Wavenumber, N HO

FIG. 12. Leading eigenvalue as a function of wavenumies 2 /) (1 is the wavelength of the disturbance)
at gap-to-diameter ratibl,/ R= 2.6 x 10~° and capillary numbe€a= 0.2: (a) Rigid gap, and (b) deformable gap
(Net = 107%). The leading eigenvalue was real in all the cases analyzed.
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The critical capillary numbeCa* was determined by locating the growth factor curve tha
is tangent to the horizontal axis at each ratio of gap to roll diametelp/2R.
Figure 13 illustrates this process by showing the growth factor versus wavenumber at m
fied elasticity numbeN e = 10-® and gaps oHg/R=2.6 x 102 andHo/R=4.3 x 10~*
at different capillary numbers. The critical capillary number at the first gap-to-roll radi
ratio wasCa* =0.28, and at the secon@a* =0.25. The critical value for the onset of
ribbing decreases with the gap between the rolls, as expected.

a 0.02

. . : —@—Ca=0.5
001 F---ncnoo-. O .- |-8-Ca=028]
' ' ' ~gg—Ca=0.1
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0.05 0.1 0.15 0.2 0.25

(=}

Wavenumber, N H,
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0.01
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FIG. 13. Leading eigenvalue as a function of wavenumiNes 27 /A (A is the wavelength of the disturbance)
at modified elasticity numbeve = 107°. (a) Hy/R=2.6 x 10~% and (b)H,/R=4.3 x 107,
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FIG. 14. Critical capillary number versus gap-to-roll diameter ratio for rigid and deformable gaps. Negati
gaps correspond to the situation when the distance between the roll axes is smaller than the sum of the roll |

The critical capillary number is plotted against gap-to-roll diameter in Fig. NEat=
107%. The results include negative gaps, i.e., when the distance between the roll axe
smaller than the sum of the undeformed roll radii and so the rolls at rest would be
interference. The critical capillary numbers for a film-splitting flow between rigid rolls ar
shown for comparison. When the gap setting is latdg/ R > 1071), the liquid pressure is
not enough to deform the roll cover appreaciably and the deformable roll behaves as
were rigid. As the gap between the rolls is narrowed, the pressure in the liquid between tl
rises, and the rubber cover deforms in response. At a given distance between the roll ¢
the critical capillary numbers in a deformable gap, e\t = 107, are always larger than
those in a rigid gap. Thus, at a fixed distance between the roll axes, a deformable gap
produce a uniform film at higher speeds of operation. As described elsewhere (Carvalho
Scriven [5]), the deformation of the resilient roll elongates the gap and pushes the film-s
meniscus further downstream, thereby lessening the pressure gradient in the liquid a
curved free surface at the splitting film. The lower the pressure gradient there, the nr
stable the flow. When the roll cover is very soft (large elasticity numberN@.= 1076),
the critical capillary number is high and its sensitivity to gap is small. At negative gaps, t
critical capillary number scarcely changes at all as the rolls are moved further togethe
falls by less than 2% as the interference goes fidg\R= —7.5 x 10~* to —4.5 x 1073,

The wavelength of the fastest growing disturbance at capillary numbers beyond the crit
value is of some interest. The ribbing instability that develops in the film split and is carri
downstream by the coated layers appears to have about this wavelength. The rate at v
the nonuniform coated layer subsequently levels is a function of the curvature of the fi
and therefore a function of the wavelength of the ribbing. If the disturbance wavelengtt
nottoo long, the leveling rate is inversely proportional to the fourth power of that wavelenc
(Anshus [1]). Figures 10, 12, and 13 also show the growth factor versus wavenumber
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capillary numbers above the critical values for both rigid and deformable gaps. In all ca:
the wavenumber of the fastest growing perturbation grows as the capillary number is rai
Beyond the onset of ribbing, if the roll speed is raised further, the wavelengt?r /N of
the ribbing disturbance shortens, which fastens leveling.

The effect on film uniformity can be profound and paradoxical: Ultimate smoothne
may be enhanced by raising the roll speed. Figure 15 shows the waveleadgt/N of
the fastest growing disturbance in units of half-gé&pversus capillary number at different
gap to roll diameter ratio, for both rigid and deformable gaps. Interestingly, when the rc
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FIG. 15. Wavelength in units of half gap/H, of three-dimensional disturbance from (a) rigid gaps and
(b) deformable gaps.
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are rigid, the predictions for different gajsly/R) come close to all lieing on a single
curve. At low capillary numberGa < 1), the sensitivity of wavelength to capillary number
is strong. If the capillary number is raised fréda= 0.1 to Ca= 0.2, the wavelength to gap
ratio falls fromx /Hp &~ 100 tor/Hp &~ 60. However, at large capillary numbe@a> 10),
the sensitivity falls and the single curve that represents all gaps asymptotically approa
a wavelength to gap ratio af/ Hp ~ 15. The results from the analysis of the soft-roll case
are the same as those from the rigid-roll case when the gap setting is large. The lic
pressure is not enough to deform the roll cover appreciably and the deformable roll beh:
as if it were rigid. When the roll cover deformation is appreciable, i.e. when the gap
small or negative, there is a major difference: at the same capillary number the wavelel
generated by deformable gaps is greater than that generated by rigid gaps. ConseqL
the rate of leveling of the coated film downstream of the film-split may be substantia
smaller when a deformable gap is used. These theoretical inferences agree qualitatively
measurements of ribbing wavelengths that are reported by Pulkrabek and Munter [24]
Carvalhoet al.[4].

In the foregoing discussion, the comparisons between the behavior of rigid and defo
able gaps (Fig. 14) are atthe same distance between the axes of the rdfis/ Re Hlowever,
at a given gafHp/ R, the flow rate through a deformable gap is larger than between rig
ones, because the resilient roll cover is compressed by the pressure that develops i
flowing liquid. In practice, a certain thickness of coated layer or film is desired, and t
gap or roll loading is adjusted to meet the specification. Hence it is appropriate to comg
gap performances on the basis of fixed layer thicknesses, or flow rate, but different :
to axis distances. To do so requires combining flow rate predictions at different gaps
modified elasticity numbers (see Carvalho and Scriven [5]) with predictions of critic
capillary number (Fig. 14). The result of doing this is shown in Fig. 16. The curve for tl
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I
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0.0001 0.001 0.01 0.1

Flow Rate, Q /2 VR

FIG. 16. Comparison of critical capillary number from rigid and deformable gaps as a function of the coat
layer thickness in units of roll radius/R= Q/2V R.
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deformable gagNe* = 1075, i.e., soft roll cover) does not extend to flow rates less tha
approximaterQ/2\7R= 2 x 1073, With soft roll covers and negative gaps, the flow rate
is nearly insensitive to the position or loading of the rolls. After a certain point, raising t
loading or decreasing the distance between the roll axes does not decrease the flow
appreciably. Therefore, a very small flow rate cannot be obtained with a very soft roll co
(see Carvalho and Scriven [5]). At a given flow rate, that can be translated to a coated
thickness, the critical capillary numbers in deformable gaps are larger than those in r
gaps. For example, if a flow rate Q‘/2\7R = 2 x 1073 is specified, a smooth coated film
can be obtained with a rigid roll at capillary numbers up to approxima@aly~ 0.105.

If a deformable roll with a modified elasticity numbhsire* = 107 is used, the maximum
capillary number is approximatel@a* ~ 0.205. In summary, the gap between a soft roll
and a hard one of the same diameter and speed can be expected to produce perfectly s|
coating at a speed almost twice as fast as the gap between a pair of rigid rolls.

6. FINAL REMARKS

The operability limits of coating processes are usually restricted by hydrodynamic
stabilities that produce defects on the coated film. A way of predicting theoretically the
limits is to study the stability of two-dimensional steady flows with respect to infinites
mal disturbances. The mathematical formulation of the problem leads to large, sparse,
nonsymmetric generalized eigenvalue problems.

A more efficient formulation than the one that has been in use recently was presen
Its essence is to restrict domain perturbations to free boundaries, where they are pl
cally relevant. This approach reduces the size of the eigenproblem. It is also comple
independent of the equations used to generate the mesh for solving the two-dimensi
steady-state free-surface base flow.

The method was used to study the stability of film-splitting flows in rigid and deformab
gaps. The predicted critical capillary numbers for the onset of ribbing from rigid gaps ag
with previous results reported by Coyé¢al. [12]. The results show that the deformation
of the roll cover delays the onset of ribbing, i.e., deformable gaps can be operated at hi
speeds without producing nonuniform profiles in the cross-web direction.
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